Konstruksi Transformator
Transformator sering juga disebut trafo memiliki konstruksi dan simbol seperti pada gambar 1 berikut ini.
Keterangan dari gambar 1 :
NP : jumlah lilitan primer
NS : jumlah lilitan sekunder
VP : tegangan primer
VS : tegangan sekunder
Sebuah trafo terdiri dari kumparan dan inti besi. Biasanya terdapat 2 buah kumparan yaitu kumparan primer dan kumparan sekunder. Kedua kumparan ini tidak berhubungan secara fisik tetapi dihubungkan oleh medan magnet. Untuk meningkatkan induksi magnetik antara 2 kumparan maka ditambahkan inti besi seperti pada gambar 1.
Inti besi pada trafo dibedanya menjadi 2 macam yaitu :
1. 1. Inti besi tipe Shell (Shell Core Transformator)
2. 2. Inti besi tipe tertutup (Closed Core Transformator)
Kedua jenis inti besi ini dapat dilihat seperti pada gambar 2 berikut ini.
Pada trafo dengan inti besi berbentuk shell, kumparan dikelilingi oleh inti besi. Fluks magnetik pada inti besi tipe shell akan terbelah dua (lihat gambar 2). Sementara kumparan primer dan kumparan sekunder digulung bersamaan. Untuk trafo yang memiliki inti besi tipe tertutup. Tidak ada pembagian fluk magnetik. Kumparan primer dan kumparan sekunder terpisah dan dihubungkan dengan inti besi.
Inti besi trafo tidak dibuat berbentuk besi tunggal, tetapi dibuat dari pelat besi yang berlapis – lapis. Bentuk lapisan pelat besi pada inti trafo dapat dilihat seperti pada gambar 3 berikut ini.
Cara menghubungkan lapisan inti besi juga bermacam-macam. Beberapa cara yang umum digunakan dapat dilihat seperti pada gambar 4 berikut ini.
Mengapa inti besi sebuah trafo harus dibuat berlapis-lapis?.
Untuk menjawab pertanyaan ini , kita terlebih dahulu harus mempelajari rugi-rugi yang terjadi pada inti besi. Rugi – rugi yang terjadi pada inti besi disebut “iron losses “ (rugi-rugi besi). Kerugian pada inti besi terdiri dari :
1. Hysterisis losses (rugi-rugi histerisis)
Kerugian histerisis disebabkan oleh gesekan molekul yang melawan aliran gaya magnet di dalam inti besi. Gesekan molekul dalam inti besi ini menimbulkan panas. Panas yang timbul ini menunjukan kerugian energi, karena sebagian kecil energi listrik tidak dipindahkan , tetapi diubah bentuk menjadi energi panas. Panas yang tinggi juga dapat merusak trafo ,sehingga pada trafo – trafo transmisi daya listrik ukuran besar, harus didinginkan dengan media pendingin. Umumnya digunakan minyak khusus untuk mendinginkan trafo ini.
Sebuah trafo didesain untuk bekerja pada rentang frekuensi tertentu. Menurunnya frekuensi arus listrik dapat menyebabkan meningkatnya rugi-rugi histerisis dan menurunkan kapasitas (VA) trafo.
2. Kerugian karena Eddy current (eddy current losses)
Kerugian karena Eddy current disebabkan oleh aliran sirkulasi arus yang menginduksi logam. Ini disebabkan oleh aliran fluk magnetik disekitar inti besi. Karena inti besi trafo terbuat dari konduktor (umumnya besi lunak), maka arus Eddy yang menginduksi inti besi akan semakin besar. Eddy current dapat menyebabkan kerugian daya pada sebuah trafo karena pada saat terjadi induksi arus listrik pada inti besi, maka sejumlah energi listrik akan diubah menjadi panas. Ini merupakan kerugian.
Untuk mengurangi arus Eddy, maka inti besi trafo dibuat berlapis-lapis, tujuannya untuk memecah induksi arus Eddy yang terbentuk di dalam inti besi. Perbedaan induksi arus Eddy di dalam inti besi tunggal dengan inti besi berlapis dapat dilihat pada gambar 5 berikut ini.
3. Rugi-rugi tembaga (copper losses)
Rugi – rugi yang ketiga adalah rugi-rugi tembaga (copper losses). Rugi-rugi tembag terjadi di kedua kumparan. Kumparan primer atau sekunder dibuat dari gulungan kawat tembaga yang dilapisi oleh isolator tipis yang disebut enamel. Umumnya kumparan dibuat dari gulungan kawat yang cukup panjang. Gulungan kawat yang panjang ini akan meningkatkan hambatan dalam kumparan. Pada saat trafo dialiri arus listrik maka hambatan kumparan ini akan mengubah sejumlah kecil arus listrik menjadi panas yaitu sebesar (i2R). Semakin besar harga R maka semakin besar pula energi panas yang timbul di dalam kumparan. Mutu kawat yang bagus dengan nilai hambatan jenis yang kecil dapat mengurangi rugi – rugi tembaga.
Sebuah trafo yang ideal diasumsikan:
- Tidak terjadi rugi-rugi hysterisis
- Tidak terjadi induksi arus Eddy
- Hambatan dalam kumparan = 0, akibatnya tidak ada rugi-rugi tembaga
Gulungan kawat pada kumparan trafo
Menggulung kawat pada kumparan trafo tidak dilakukan dengan sembarangan, tetapi mengikuti aturan tertentu. Pada trafo fase tunggal, terdapat 2 gulungan kumparan, yaitu gulungan pada kumparan primer yang terhubung langsung ke sumber arus listrik dan gulungan kumparan sekunder yang terhubung langsung ke beban. Perbandingan jumlah gulungan antara kumparan primer dan kumparan sekunder akan menentukan jenis trafo, apakah jenis step-up atau step-down. Bila gulungan kawat pada kumparan primer lebih banyak dibandingkan dengan gulungan kawat pada kumparan sekunder maka trafo akan berfungsi sebagai penurun tegangan atau step-down trafo. Sebaliknya jika gulungan kawat pada kumparan sekunder lebih banyak dari pada gulungan kawat pada kumparan primer, maka trafo akan berfungsi untuk menaikan tegangan atau step-up trafo.
Jenis material kawat yang banyak digunakan untuk membuat kumparan adalah kawat tembaga. Kawat tembaga memiliki konduktivitas listrik yang bagus, tetapi memiliki berat yang besar. Untuk mengurangi berat transformator, sering juga digunakan jenis kawat aluminium. Kawat dengan bahan dasar aluminium memiliki berat jenis yang kecil, tetapi kawat ini tidak tahan terhadap panas dan konduktivitasnya masih lebih kecil dibandingkan dengan tembaga.
Satu hal yang penting dalam menggulung kumparan trafo adalah arah gulungan (orientasi titik). Kumparan primer dan kumparan sekunder dapat digulung searah, tetapi dapat juga digulung berlawanan arah. Hal ini akan berpengaruh ke fasa arus listrik. Apabila kumparan primer dan kumparan sekunder digulung searah, maka fasa arus listrik pada kumparan primer akan sama dengan fasa arus listrik pada kumparan sekunder. Sebaliknya apabila arah gulungan kumparan primer dan sekunder berlawanan arah, maka fasa arus listrik pada kumparan primer akan berlawanan dengan fasa arus listrik pada kumparan sekunder. Untuk jelasnya dapat dilihat pada gambar 6 berikut ini.
Trafo dapat digunakan untuk menaikan atau menurunkan tegangan. Trafo yang digunakan untuk menaikan tegangan disebut trafo step – up sedangkan trafo yang digunakan untuk menurunkan tegangan disebut trafo step-down. Pada trafo step – up tegangan pada sisi sekunder akan lebih tinggi dari tegangan pada sisi primer sebaliknya pada trafo step down tegangan sisi sekunder akan lebih rendah dari tegangan pada sisi primer. Selain trafo step-up dan trafo step –down juga ada trafo impedansi. Trafo impedansi tidak menaikan atau menurunkan tegangan, tetapi digunakan untuk menyesuaikan impedansi suatu rangkaian listrik atau dapat juga digunakan sebagai beban dan filter terhadap medan magnet.
Tegangan pada sisi primer (Vp) dan tegangan sekunder (Vs) ditentukan oleh jumlah lilitan kawat pada kumparan primer dan sekunder. Perbandingan antara lilitan kawat pada kumparan primer (Np) dan lilitan kawat pada kumparan sekunder (Ns) disebut rasio lilitan (n). Sedangkan perbandingan antara tegangan primer (Vp) dengan tegangan sekunder (Vs) disebut rasio tegangan. Besar rasio tegangan dengan rasio lilitan harus sama. Sehingga secara matematis dapat ditulis :
Persamaan 1 berlaku bila fluks medan magnet primerdan fluks medan magnet sekunder sama. Rasio lilitan merupakan salah satu faktor penting dalam mendesain dan membuat trafo.
Contoh 1
Sebuah trafo memiliki jumlah lilitan kumparan primer 1500 dan jumlah lilitan pada kumparan sekunder 500 hitunglah berapa rasio lilitan trafo tersebut. Bila pada sisi primer diberi tegangan listrik AC 300 V, hitunglah tegangan pada sisi sekunder bila fluks magnet primer dan sekunder sama.
Jawab
Bila fluks medan magnet pada sisi primer dan sekunder sama, maka berlaku:
Cara kerja transfromator
Pada trafo kumparan primer dan kumparan sekunder tidak berhubungan sama sekali, jadi bagaimana daya listrik dapat berpindah dari primer ke sekunder?.
Penghubung antara kumparan primer dan kumparan sekunder adalah fluks medan magnet. Ketika kumparan primer dialiri arus listrik AC, maka pada kumparan primer akan timbul medan magnet disekelilingnya yang disebut mutual induktansi. Mutual induktansi ini bekerja menurut hukum Faraday tentang induksi magnet pada kawat yang dialiri arus listrik. Kuat medan magnet berubah dari nol hingga maksimum yang dinyatakan dengan
Garis gaya magnet ini keluar dari kumparan primer dan diarahkan oleh inti besi. Fluk magnetik ini berputar di dalam inti besi seperti pada gambar 2. Fluks medan magnet berubah naik dan turun sesuai dengan sumber arus AC yang diberikan.
Besar medan magnet yang diinduksikan ke inti besi ditentukan oleh besarnya arus listrik dan jumlah lilitan kumparan. Semakin besar lilitan kumparan dan semakin besar arus listrik yang mengalir, maka semakin besar juga fluks medan magnet yang diinduksikan ke inti besi.
Ketika medan magnet ini memotong atau masuk ke kumparan sekunder, maka pada kumparan sekunder akan timbul gaya gerak listrik yang disebut tegangan induksi. Besar tegangan induksi ditentukan menurut hukum faraday yaitu :
Tegangan induksi ini tidak mengubah frekuensi, sehingga frekuensi pada kumparan primer akan sama dengan frekuensi pada kumparan sekunder.
Bila kira mempunyai sebuah trafo dengan 1 lilitan tunggal pada kumparan primer dan demikian juga dengan kumparan sekunder. Jika tegangan 1 volt diberikan pada kumparan primer dan diasumsikan tidak ada kerugian, arus listrik yang mengalir cukup untuk membangkitkan fluks medan magnet dan menghasilkan tegangan induksi sebesar 1 volt pada 1 lilitan di kumparan sekunder. Ini yang disebut dengan besar tegangan per lilitan.
Jika fluk medan magnet bervariasi sebesar Φ = Φmax sinωt, maka hubungan antara induksi emf, (E) dan N diberikan :
Tegangan maksimum jika Cos(wt) = 1, atau
Tegangan rms (rms = root mean square) adalah :
Persamaan ini dikenal dengan nama transformer EMF equation. Untuk kumparan primer maka digunakan NP dan untuk kumparan sekunder digunakan Ns. Trafo tidak dapat bekerja pada arus DC, karena arus DC tidak menimbulkan fluk medan magnet.
Contoh 2
Sebuah trafo mempunyai 480 lilitan pada kumparan primer dan 90 lilitan pada kumparan sekunder. Fluk magnet maksimum sebesar 1,1 Tesla pada tegangan 2000 Volt dengan frekuensi 50 Hz, hitunglah :
- Fluks maksimum di inti besi
- Luas penampang inti
- Induksi emf sekunder
Jawab :
Fluks maksimum di inti besi
Daya Transformator
Daya trafo dinyatakan dalam satuan VA (Volt-Ampere). Untuk ukuran yang lebih besar dinyatakan dalam satuan kVA (kiloVolt-ampere). Pada trafo yang ideal, daya yang diberikan pada kumparan primer akan seluruhnya dipindahkan ke kumparan sekunder tanpa rugi-rugi. Trafo ideal tidak mengubah daya yang diberikan, hanya mengubah tegangan. Trafo hanya dapat menaikkan atau menurunkan tegangan tetapi tidak dapat menaikan daya listrik. Secara matematis, daya sebuah trafo dapat dituliskan :
Dimana θp dan θs adalah fase pada primer dan sekunder.
Efisiensi transformator
Sebuah trafo tidak membutuhkan bagian yang bergerak untuk memindahkan energi dari kumparan primer ke kumparan sekunder. Ini berarti tidak ada kerugian karena gesekan atau hambatan udara seperti yang terdapat pada mesin – mesin listrik (contoh motor listrik dan generator). Namun di dalam trafo juga terdapat kerugian yang disebut rugi-rugi tembaga (copper losses) dan rugi-rugi besi (iron losses). Rugi-rugi tembaga terdapat pada kumparan primer dan kumparan sekunder, sedangkan rugi-rugi besi terdapat dalam inti besi. Rugi-rugi ini berupa panas yang dilepaskan akibat terjadinya Eddy current. Tetapi rugi-rugi ini sangat kecil. Efisiensi sebuah trafo dapat dihitung dengan membandingkan daya yang dikeluarkan di kumparan sekunder dengan daya yang diberikan pada kumparan primer.
Sebuah trafo ideal akan memiliki efisiensi sebesar 100 %. Artinya semua daya yang diberikan pada kumparan primer dipindahkan ke kumparan sekunder tanpa ada kerugian. Sebuah trafo yang real memiliki efisiensi di bawah 100% dan pada saat beban penuh (full load) efisiensi trafo berkisar pada harga 94 – 96%. Untuk trafo yang bekerja pada tegangan dan frekuensi yang konstan, efisiensi trafo dapat mencapai 98%. Efisiensi trafo dapat dinyatakan :
Transformator dengan banyak kumparan
Pada pembahasan sebelumnya kita hanya melihat trafo dengan 2 kumparan, yaitu 1 kumparan primer dan 1 kumparan sekunder. Tetapi, trafo dapat dibuat dengan banyak kumparan, baik pada kumparan primer maupun pada kumparan sekunder. Trafo dengan banyak kumparan disebut multiple winding transformer.
Prinsip kerja trafo dengan banyak kumparan sama dengan trafo dengan 2 kumparan. Perhitungan tegangan primer, tegangan sekunder, jumlah lilitan primer dan jumlah lilitan sekunder serta arah lilitan sama dengan perhitungan pada trafo dengan 2 kumparan. Hal yang perlu diperhatikan adalah polaritas tegangan pada kumparan, baik kumparan primer maupun kumparan sekunder. Gambar 7 menunjukan skema trafo dengan banyak kumparan.
Gambar 7 menunjukan sebuah trafo yang memiliki 2 kumparan primer dan 3 kumparan sekunder. Kumparan primer trafo dapat dihubungkan secara seri atau paralel. Apabila hendak dihubungkan dengan tegangan yang lebih tinggi kumparan primer dapat dihubungkan seri. Bila kumparan primer dihubungkan secara parelel, maka kumparan primer dapat dialiri arus listrik yang lebih besar lagi. Demikian juga dengan kumparan sekunder. Bila dihubungkan secara seri, maka tegangan yang dihasilkan akan semakin besar, dan bila dihubungkan secara paralel, maka arus yang dihasilkan akan semakin besar.
Proses menghubungkan 2 kumparan atau lebih, harus diperhatikan polaritas masing -masing kumparan. Kumparan yang dihubungkan seri atau paralel harus memiliki polaritas yang sama. Gambar 8 memberikan contoh cara menghubungkan kumparan -kumparan primer dan kumparan – kumparan sekunder.
Trafo certer tap (Trafo CT)
Trafo CT adalah trafo step-down yang kumparan sekundernya memiliki titik tengah (center tap). Trafo ini digunakan untuk menciptakan 2 tegangan sekunder yang sama. Trafo CT digunakan untuk membuat power supply bipolar. Gambar 9 menunjukan skema trafo CT.
Gambar 10 dan gambar 11 menunjukan 2 macam trafo step – down yang banyak digunakan pada saat ini. Gambar 10 menunjukan jenis trafo CT dan gambar 11 menunjukan jenis trafo engkel. Trafo engkel adalah sebutan untuk trafo standar yang memiliki 1 kumparan primer dan 1 kumparan sekunder.
Gambar 10 contoh trafo engkel
Gambar 11 contoh trafo CT
Catatan : beberapa gambar diambil dari http://www.electronics-tutorials.ws/index.html
Ditulis dalam Elektronika
Tidak ada komentar:
Posting Komentar